SEVENTH GRADE

LEXILE GRADE LEVEL BANDS: 970L TO 1120L

Key Ideas and Details

7.RI.1. Read closely to determine what the text says explicitly and to make logical inferences from it: cite specific textual evidence when writing or speaking to support conclusions drawn from the text.

CRITICAL FOCUS:

Informational Text-Literary Nonfiction and Historical, Scientific and Technical Texts

Includes biographies and autobiographies; books about history, social studies, science, and the arts; technical texts, including directions, forms and information displayed in graphs, charts or maps; and digital sources on a range of topics.

Learner Outcomes

- Seventh grade students develop the ability to gather more than one piece of evidence to support their thinking about the informational texts they read. They need to be able to find pieces of relevant evidence that not only support their thinking, but are linked together to a common idea or conclusion. In order to do so, students at this level need practice locating, evaluating, and categorizing evidence and linking this evidence to conclusions or claims they have made about the text.

- At this level, seventh grade students must be able to locate and describe the central ideas presented in a text. They understand how the central ideas are related to the details and examples that support them. Students pay attention to how the central ideas are developed throughout the text and they observe how the details and examples work together to uphold the central idea. Students in seventh grade should be able to summarize what they have read, free from their own opinions and bias.

- Students in seventh grade need to be able to read closely to analyze relationships between individuals, events, and ideas in a text. For example, in an informational history book, they may reflect on how historical figures influenced ideas or events of the time period and vice versa. In order to do so, students will need wide and deep exposure to informational texts. They may also need tools for recording the relationships they observe, such as a graphic organizer or structured note-taking.

BIG IDEA:

We read to develop as people and citizens in our global society.

We make interpretations and draw conclusions both from what we read and experience in life.

ACADEMIC VOCABULARY:

The terms students should learn to use with increasing precision with this anchor standard are: relevant, credible, reliable, opinion, substantiate, unsubstantiated, infer, summarize, synthesize, critique, thesis, organizational pattern, controlling idea, transitional words and phrases, context, denotative meaning, connotative meaning, inductive reasoning, deductive reasoning, drawing conclusions, subtle inference, procedural text.
English language arts

7.RI.1. Cite several pieces of textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text.

ESSENTIAL QUESTION(S) How can I provide proof of what I have learned from different kinds of text?

LEARNING PROGRESSIONS

<table>
<thead>
<tr>
<th>Grade 6</th>
<th>Cite strong and thorough evidence to support analysis of what the text says explicitly as well as inferences drawn from the text.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 7</td>
<td>Cite several pieces of textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text.</td>
</tr>
<tr>
<td>Grade 8</td>
<td>Cite the textual evidence that most strongly supports an analysis of what the text says explicitly as well as inferences drawn from the text.</td>
</tr>
</tbody>
</table>

DOK Range Target for Instruction & Assessment

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
</table>

Learning Expectations:

<table>
<thead>
<tr>
<th>Know: Concepts/Skills</th>
<th>Think</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify inferences from a text</td>
<td>Analyze several pieces of text to determine what they each explicitly say</td>
<td></td>
</tr>
<tr>
<td>Identify explicit information from a text</td>
<td></td>
<td>Formulate inferences from textual material</td>
</tr>
<tr>
<td>Recognize credible resources/sources</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KEY STRATEGIES:

- Assimilating prior knowledge
- Rereading to clarify information – close reading techniques
- Text-based questions
- Seeking meaning of unknown vocabulary
- Making and revising predictions
- Using critical and divergent thinking and assimilating prior knowledge to draw conclusions
- Making connections and responding to text
Domain: Operations and Algebraic Thinking (OA)

Cluster: Represent and solve problems involving multiplication and division.

Students develop an understanding of the meanings of multiplication and division of whole numbers through activities and problems involving equal-sized groups, arrays, and area models; multiplication is finding an unknown product, and division is finding an unknown factor in these situations. For equal-sized group situations, division can require finding the unknown number of groups or the unknown group size.

- Area and perimeter
- Permutation and combinations
- Rectangular Coordinate System
- Circle graphs

1. Developing understanding of multiplication and division and strategies for multiplication and division within 100.
 - Use activities and problems involving equal-sized groups, arrays, and area models to build understanding of the meanings of multiplication and division
 - Students use properties of operations to calculate products of whole numbers, using increasingly sophisticated strategies of properties to solve multiplication and division problems involving single-digit factors.
 - Students learn the relationship between multiplication and division.

2. Developing understanding of fractions, especially unit fractions (fractions with numerator 1).
 - Students develop an understanding of fractions, beginning with unit fractions.
 - Students view fractions in general as being built out of unit fractions, and they use fractions along with visual fraction models to represent parts of a whole.
 - Students understand that the size of a fractional part is relative to the size of the whole.
 - Students are able to use fractions to represent numbers equal to, less than, and greater than one.
 - They solve problems that involve comparing fractions by using visual fraction models and strategies based on noticing equal numerators or denominators.

3. Developing understanding of the structure of rectangular arrays and of area.
 - Students recognize area as an attribute of two-dimensional regions.
 - They measure the area of a shape by finding the total number of same-size units of area required to cover the shape without gaps or overlaps, a square with sides of unit length being the standard unit for measuring area.
 - Students understand that rectangular arrays can be decomposed into identical rows or into identical columns. By decomposing rectangles into rectangular arrays of squares, students connect area to multiplication, and justify using multiplication to determine the area of a rectangle.

4. Describing and analyzing two-dimensional shapes.
 - Students describe, analyze, and compare properties of two-dimensional shapes.
 - They compare and classify shapes by their sides and angles, and connect these with definitions of shapes.
 - Students relate their fraction work to geometry by expressing the area of part of a shape as a unit fraction of the whole.
Mathematics

Big Idea:
Multiplication and Division are related operations.

Academic Vocabulary:
The terms students should learn to use with increasing precision with this cluster are: products, groups of, quotients, partitioned equally, multiplication, division, equal groups, group size, arrays, equations, unknown.

Cluster Learning Progressions

<table>
<thead>
<tr>
<th>2nd Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Represent and solve situational problems, which involve addition and subtraction within 100. Represent and solve two-step situational problems.</td>
</tr>
<tr>
<td>2.0A.1 Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.</td>
</tr>
<tr>
<td>2.0A.2 Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common types of multiplication and division situations.</td>
</tr>
<tr>
<td>3.0A.1 Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.</td>
</tr>
<tr>
<td>3.0A.2 Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.</td>
</tr>
<tr>
<td>3.0A.3 Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.</td>
</tr>
<tr>
<td>3.0A.4 Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ? = 48$, $5 = ? \div 3$, $6 \times 6 = ?$.</td>
</tr>
<tr>
<td>3.0A.5 Apply properties of operations as strategies to multiply and divide. Examples: If $6 \times 4 = 24$ is known, then $4 \times 6 = 24$ is also known. (Commutative property of multiplication). $3 \times 5 \times 2$ can be found by $3 \times 5 = 15$, then $15 \times 2 = 30$, or by $5 \times 2 = 10$, then $3 \times 10 = 30$. (Associative property of multiplication). Knowing that $8 \times 5 = 40$ and $8 \times 2 = 16$, one can find 8×7 as $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 = 56$. (Distributive property).</td>
</tr>
<tr>
<td>3.0A.6 Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8.</td>
</tr>
<tr>
<td>3.0A.7 Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using a letter for the unknown quantity, the order of operations, and two-step word problems with all four operations.</td>
</tr>
<tr>
<td>3.0A.8 Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.</td>
</tr>
</tbody>
</table>
3.OA.1. Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.

ESSENTIAL QUESTION(S)

How can I find the total number of objects in equal groups?

MATHEMATICAL PRACTICE(S)

- 3.MP.1. Make sense of problems and persevere in solving them.
- 3.MP.7. Look for and make use of structure.
Students should be able to:

- Find the product of multiple groups of objects.
- Interpret products of whole numbers as a total number of objects in a number of groups.

Assessment Types

- Tasks assessing concepts, skills and procedures
- Tasks assessing expressing mathematical reasoning
- Tasks assessing modeling / applications

Learning Expectations:

<table>
<thead>
<tr>
<th>DOK Range Target for Instruction & Assessment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Expectations:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should be able to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Find the product of multiple groups of objects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interpret products of whole numbers as a total number of objects in a number of groups.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Types</th>
<th>Tasks assessing concepts, skills and procedures</th>
<th>Tasks assessing expressing mathematical reasoning</th>
<th>Tasks assessing modeling / applications</th>
</tr>
</thead>
</table>

EXPLANATIONS AND EXAMPLES:

Students recognize multiplication as a means to determine the total number of objects when there are a specific number of groups with the same number of objects in each group. Multiplication requires students to think in terms of groups of things rather than individual things. Students learn that the multiplication symbol ‘×’ means “groups of” and problems such as 5 x 7 refer to 5 groups of 7.

To further develop this understanding, students interpret a problem situation requiring multiplication using pictures, objects, words, numbers, and equations. Then, given a multiplication expression (e.g., 5 x 6) students interpret the expression using a multiplication context. (See Table 2) They should begin to use the terms, factor and product, as they describe multiplication.

3.OA.2. Interpret whole-number quotients of whole numbers, e.g. interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 ÷ 8.

When you divide what do you find?

3.MP.1. Make sense of problems and persevere in solving them.
3.MP.7. Look for and make use of structure.
Common Core State Standards Deconstructed for Classroom Impact

THIRD GRADE

LEXILE GRADE LEVEL BANDS: 520L TO 820L

<table>
<thead>
<tr>
<th>DOK Range Target for Instruction & Assessment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Expectations:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students should be able to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Know what the numbers in a division problem represent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explain what division means and how it relates to equal shares</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpret quotients as the number of shares or the number of groups when a set of objects is divided equally</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment Types:

<table>
<thead>
<tr>
<th>Assessment Types:</th>
<th>Tasks assessing concepts, skills and procedures</th>
<th>Tasks assessing expressing mathematical reasoning</th>
<th>Tasks assessing modeling / applications</th>
</tr>
</thead>
</table>

EXPLANATIONS AND EXAMPLES:

This standard focuses on two distinct models of division: partition models and measurement (repeated subtraction) models. Partition models provide students with a total number and the number of groups. These models focus on the question, “How many objects are in each group so that the groups are equal?” A context for partition models would be: There are 12 cookies on the counter. If you are sharing the cookies equally among three bags, how many cookies will go in each bag? Measurement (repeated subtraction) models provide students with a total number and the number of objects in each group. These models focus on the question, “How many equal groups can you make?” A context for measurement models would be: There are 12 cookies on the counter. If you put 3 cookies in each bag, how many bags will you fill?

(continues to the next standards in the cluster)